
Abusing Firefox Extensions

Defcon17– US, Las Vegas

Roberto Suggi Liverani

Nick Freeman

WTF Are We?

 Roberto Suggi Liverani

 Senior Security Consultant – Security-Assessment.com

 OWASP NZ Leader

 http://malerisch.net

 Nick Freeman

 Security Consultant – Security-Assessment.com

 http://atta.cked.me

 Contact us

 Roberto.suggi@security-assessment.com

 Nick.freeman@security-assessment.com

/index.html
http://atta.cked.me/
mailto:Roberto.suggi@security-assessment.com
mailto:Roberto.suggi@security-assessment.com
mailto:Roberto.suggi@security-assessment.com
mailto:Nick.freeman@security-assessment.com
mailto:Nick.freeman@security-assessment.com
mailto:Nick.freeman@security-assessment.com

Agenda

 Introduction

 Security threats and risks

 Disclosure summary

 Abusing Extensions – a selection of exploits and demos

Introduction

 What are Firefox extensions?

 It‟s just software

 Equivalent of ActiveX

 What extensions do?

 Extend, modify and control browser behaviour

 Provides extended/rich functionality and added features

 Different type of Firefox addons

 Extensions

 Plugins (Search Engine plugins) and Themes

5

XUL:

- provides UI to extensions

- combined with JavaScript,

CSS, HTML elements

-.xul file

XBL:

- allows creation of new widgets

- combined with CSS, XML and

XUL

XPConnect:

- middle layer allows JavaScript

to interface with XPCOM

XPCOM:

- reusable

components/interfaces

- interact with low layer libraries:

network, I/O, file system, etc.

Chrome:

– privileged browser zone

– code fully trusted

Extension Security Model

 Mozilla extension security model is nonexistent

 Extension code is fully trusted by Firefox

 Vulnerability in extension code might result in full system

compromise

 No security boundaries between extensions

 An extension can silently modify/alter another extension

 XPCom C++ components subject to memory corruption

 Extensions vulnerabilities are platform independent

 Lack of security policies to allow/deny Firefox access to internal API,

XPCom components, etc

 Any Mozilla application with the extension system is vulnerable to

same class of issues (e.g. Thunderbird)

The potential

 Statistics – Firefox Browser Market Share

 Beyond 20% globally since November 2008, more than 50% in certain

regions/countries

 Source: Marketshare - marketshare.hitslink.com

Extension downloads boom

 Statistics – AMO (Addons.Mozilla.Org) Download Trend

 1 billion extension downloads from AMO – Nov 2008

Extensions are everywhere

Search engines Social

Networks

Services Software/OS/Web

Application

Package

Extensions

Portals

Google Toolbar

Google Browser

Sync

Yahoo Toolbar

Ask.com Toolbar

Del.icio.us

Extension

Facebook

Toolbar

AOL Toolbar

LinkedIn

Browser

Toolbar

Netcraft Anti-

Phishing

Toolbar

PhishTank

SiteChecker

Skype

AVG

Ubuntu

LiveLink

(OpenText)

AMO (addons

mozilla org)

Mozdev

Xulplanet

The weakest part of the chain

 Human Factors - users:

 Trust

 AMO Recommended Extensions

 Open Source

 Misconception = users expect extensions to be safe

 'according to Softpedia, it's 100% safe„

 NoScript/AdBlockPlus provides false sense of security

 chrome:// URI whitelisted on NoScript, any XSS injection there

is not blocked

The weakest part of the chain ctd.

 Human Factors – developers:

 The Mozilla page for building extensions doesn't mention the word

'security' once

 Many addon developers do it for a hobby – not necessarily aware of

how dangerous a vulnerable extension can be

 Human Factors – reviewers:

 Don‟t need to have great knowledge about app / webapp security

 Need to follow a few guidelines for what is and isn‟t acceptable

 These guidelines focus on finding malicious extensions

 Vulnerable extensions can quite easily slip through

Concerns on AMO

 Everyone can write an extension and submit it to AMO (even us :)

 AMO review process lacks complete security assessment

 Few extensions are signed in AMO. Extensions are generally not

“signed”. Users trust unsigned extensions.

 Experimental extensions (not approved yet) are publicly available

Extension And Malware

 Some people have already exploited this concept:

 FormSpy - 2006

 Downloader-AXM Trojan, poses as the legitimate NumberedLinks

0.9 extension

 Steal passwords, credit card numbers, and e-banking login details

 Firestarterfox - 2008

 Hijacks all search requests through multiple search engines and

redirects them through Russian site thebestwebsearch.net

 Vietnamese Language Pack - 2008

 Shipped with adware because the developer was owned

 Might happen in the near future…

 Malware authors bribe/hack famous/recommended extension

developer/vendor

 Initial benign extension, malware is introduced in an 3rd/4th update

Abusing Firefox Extensions

 Finding bugs in Firefox extensions is fun ;-)

 Multiple ways to find them – it depends on:

 Nature of the extension

 Logic exposed

 Input and output

 XPCOM components

 Third party API/components

 Our research focus:

 Extension logic, security model and functions exposed

 Extension data flow and data injection points

XSS or Cross Browser Context

 XSS on steroids

 Any input rendered in the chrome is a potential XSS injection point

 XSS in chrome is privileged code!

 It can interface with XPConnect and XPCOM = 0wn3d!

 No SOP restrictions!

 Cannot be blocked by NoScript!

NoScript’s Whitelist

XSS disclosing /etc/passwd

Testing for XSS

 Run Firefox with console active

 firefox.exe -console

 To confirm execution of our XSS payload, generate an error into

console – dump(error);

 Is our XSS in Chrome? Check all window properties - not just window

Useful XSS payloads

 Check if nsIScriptableUnescapeHTML.parseFragment() is used

 Lack of this might mean use of input black-list filters

Method Description Payload

iframe with data URI and

base64 payload

<iframe src =

„data:text/html;base64,base64XSSpayloadhere‟>

Recursive iframes <iframe src = “data:text/html,<iframe src =

„data:text/html;base64,base64iframe+data+XSSpa

yload‟> </iframe”></iframe>

Embedded XSS <embed src=„javascript:XSSpayload‟>

XSS on DOM events

XUL injection <![CDATA[“<button id=“1” label=“a”

oncommand=„alert(window)‟ />”]]>

XBL injection style=“-moz-binding:url(data:text/xml;charset=utf-

8,XBL)”

Tools

 Firebug – provides console, monitor and debugging features

 Chromebug – Firebug for chrome, XUL

 WebDeveloper – allows more control on page elements, cookies

 XPComViewer – shows registered XPCOM components/interfaces

 Venkman - JavaScript Debugger

 Console2 – advanced error console

 ChromeList – File viewer for installed extensions

 Execute JS - enhanced JavaScript-Console

 DOM Inspector – allows inspecting the DOM

 Burp – web proxy

 Mozrepl – js shell via telnet service

 Sysinternals Tools – regmon, filemon, tcpmon, etc.

 Total number of downloads from AMO: 30,000,000+

Abusing extensions…

Extension

Name

Date Disclosed Vendor Response

Date

Fix Date

WizzRSS 2009/02/18 2009/02/18 2009/03/20

CoolPreviews 2009/03/05 No response, silently

fixed

2009/04/20

FireFTP N/A N/A 2009/02/19

Undisclosed 2009/02/16 2009/02/16 N/A

Feed Sidebar 2009/03/04 2009/03/05 2009/03/14

Undisclosed 2009/02/27 N/A N/A

UpdateScanner 2009/06/08 2009/06/11 2009/06/15

Undisclosed 2009/06/22 N/A N/A

Undisclosed 2009/06/30 2009/06/30 2009/07/06

ScribeFire 2009/07/10 2009/07/15 2009/07/20

Skype N/A N/A 2009/06/03

Skype

 Skype (<=3.8.0.188)

 Issue:

 Automatic arbitrary number of calls to arbitrary phone numbers and

skypenames

 Function skype_tool.call() is exposed to DOM and can be called

directly

 Skype username injection - skypeusername%00+\"

 Filtering/Protection:

 None.

 Exploit:

 Automatic arbitrary phone call to multiple numbers

Demo

 Demo.avi

 Arbitrary phone calls

..\Preso

CoolPreviews

 CoolPreviews – 2.7

 Issue:

 URI is passed to the CoolPreviews Stack without any filtering.

 A data: URI is accepted and its content is rendered in the chrome

privileged zone.

 User triggers exploit by adding the malicious link to the CoolPreviews

stack (right-click by default)

 Filtering/Protection:

 No use of URI whitelist

 Exploit:

 data:text/html,base64;payloadbase64encoded

Demo

 Remote Code Execution Payload – invoking cmd.exe

Update Scanner

 Update Scanner (<3.0.3)

 Issue:

 Updated content is rendered within a chrome privileged window.

 Malicious site inserts new payload and that is rendered when the user

looks at the site changes from the Update Scanner window

 Filtering/Protection:

 <script> is ignored

 Exploit:

 XSS via event handler :

Demo

 Compromising NoScript – whitelisting malicious site

FireFTP

 FireFTP (<1.1.4)

 Issue:

 HTML and JavaScript in a server‟s welcome message is evaluated

when connecting to an FTP server.

 The code is executed in the chrome privilege zone

 Filtering/Protection:

 None.

 Exploit:

 Local File Disclosure

Demo

 Local File Disclosure

Feed Sidebar

 Feed Sidebar (<3.2)

 Issue:

 HTML and JavaScript in the <description> tags of RSS feeds is

executed in the chrome security zone.

 JavaScript is encoded in base64 or used as the source of an iframe

and executed when the user clicks on the malicious feed item.

 Filtering/Protection:

 <script> tags are stripped

 Exploit:

 <iframe

src="data:text/html;base64,base64encodedjavascript">&

lt;/iframe>

Demo

 Password stealing

ScribeFire

 ScribeFire (<3.4.3)

 Issue:

 JavaScript in DOM event handlers such as onLoad is evaluated in the

chrome privileged browser zone.

 Drag & dropping a malicious image into the blog editor executes the

JavaScript.

 Filtering/Protection:

 No protection for DOM event handlers.

 Exploit:

 <img src=„http://somewebsite.tld/lolcatpicture.jpg‟

onLoad=„evilJavaScript‟>

Exploit

 Reverse VNC Using XHR – contents of payload

Security Disclosure

 Security disclosure is a new process to extension

developers/vendors

 Security is underestimated/not understood.

 Few posts regarding security vulnerabilities in Firefox extensions in

sec mailing-lists as Full Disclosure.

 Mozilla security team can now be queried for bugs found in extensions

Recommendations

 Developers:

 Follow OWASP developer‟s guide

 Read code of similar extensions for ideas on avoiding common bugs

 Security professionals:

 Adhere to the OWASP testing guide and our presentation

 Watch for publications for new ideas on breaking extensions

 End-users:

 Don‟t trust extensions!

 Changelogs of security issues / Bugzilla

 Updating addons (after checking the above)

 Consider Safe Mode (disable all extensions)

 Thanks! (buy us a beer!)

Roberto.suggi@security-assessment.com

Nick.freeman@security-assessment.com

mailto:Roberto.suggi@security-assessment.com
mailto:Roberto.suggi@security-assessment.com
mailto:Roberto.suggi@security-assessment.com
mailto:Nick.freeman@security-assessment.com
mailto:Nick.freeman@security-assessment.com
mailto:Nick.freeman@security-assessment.com

References

 Research and publications on the topic

 Extensible Web Browser Security - Mike Ter Louw, Jin Soon Lim,

and V.N. Venkatakrishnan

 http://www.mike.tl/view/Research/ExtensibleWebBrowserSecur

ity

 Bachelor thesis on Firefox extension security - Julian Verdurmen

 http://jverdurmen.ruhosting.nl/BachelorThesis-Firefox-

extension-security.html

 Attacking Rich Internet Applications (kuza55, Stefano Di Paola)

 http://www.ruxcon.org.au/files/2008/Attacking_Rich_Internet_A

pplications.pdf

http://www.mike.tl/view/Research/ExtensibleWebBrowserSecurity
http://www.mike.tl/view/Research/ExtensibleWebBrowserSecurity
http://jverdurmen.ruhosting.nl/BachelorThesis-Firefox-extension-security.html
http://jverdurmen.ruhosting.nl/BachelorThesis-Firefox-extension-security.html
http://jverdurmen.ruhosting.nl/BachelorThesis-Firefox-extension-security.html
http://jverdurmen.ruhosting.nl/BachelorThesis-Firefox-extension-security.html
http://jverdurmen.ruhosting.nl/BachelorThesis-Firefox-extension-security.html
http://jverdurmen.ruhosting.nl/BachelorThesis-Firefox-extension-security.html
http://jverdurmen.ruhosting.nl/BachelorThesis-Firefox-extension-security.html
http://www.ruxcon.org.au/files/2008/Attacking_Rich_Internet_Applications.pdf
http://www.ruxcon.org.au/files/2008/Attacking_Rich_Internet_Applications.pdf

References

 Firebug – Petko. D. Petkov, Thor Larholm, 06 april 2007

 http://larholm.com/2007/04/06/0day-vulnerability-in-firebug/

 http://www.gnucitizen.org/blog/firebug-goes-evil/

 Tamper Data XSS - Roee Hay – 27 jul 2008

 http://blog.watchfire.com/wfblog/2008/07/tamper-data-cro.html

 GreaseMonkey – ISS – 21 Jul 2005

 http://xforce.iss.net/xforce/xfdb/21453

 Sage RSS Reader (pdp & David Kierznowski)

 http://www.gnucitizen.org/blog/cross-context-scripting-with-

sage/

http://larholm.com/2007/04/06/0day-vulnerability-in-firebug/
http://larholm.com/2007/04/06/0day-vulnerability-in-firebug/
http://larholm.com/2007/04/06/0day-vulnerability-in-firebug/
http://larholm.com/2007/04/06/0day-vulnerability-in-firebug/
http://larholm.com/2007/04/06/0day-vulnerability-in-firebug/
http://larholm.com/2007/04/06/0day-vulnerability-in-firebug/
http://larholm.com/2007/04/06/0day-vulnerability-in-firebug/
http://www.gnucitizen.org/blog/firebug-goes-evil/
http://www.gnucitizen.org/blog/firebug-goes-evil/
http://www.gnucitizen.org/blog/firebug-goes-evil/
http://www.gnucitizen.org/blog/firebug-goes-evil/
http://www.gnucitizen.org/blog/firebug-goes-evil/
http://blog.watchfire.com/wfblog/2008/07/tamper-data-cro.html
http://blog.watchfire.com/wfblog/2008/07/tamper-data-cro.html
http://blog.watchfire.com/wfblog/2008/07/tamper-data-cro.html
http://blog.watchfire.com/wfblog/2008/07/tamper-data-cro.html
http://blog.watchfire.com/wfblog/2008/07/tamper-data-cro.html
http://xforce.iss.net/xforce/xfdb/21453
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage/
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage/
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage/
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage/
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage/
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage/
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage/
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage/
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage/

