
Exploiting Firefox Extensions

EUSecWest 09 – UK, London

Roberto Suggi Liverani

Nick Freeman

1

Who The Heck Are We?

 Roberto Suggi Liverani

 Senior Security Consultant – Security-Assessment.com

 OWASP NZ Leader

 http://malerisch.net

 Nick Freeman

 Security Consultant – Security-Assessment.com

 http://atta.cked.me

 Contact us

 Roberto.suggi@security-assessment.com

 Nick.freeman@security-assessment.com

2

/index.html
http://atta.cked.me/
mailto:Roberto.suggi@security-assessment.com
mailto:Roberto.suggi@security-assessment.com
mailto:Roberto.suggi@security-assessment.com
mailto:Nick.freeman@security-assessment.com
mailto:Nick.freeman@security-assessment.com
mailto:Nick.freeman@security-assessment.com

Agenda

 Introduction

 Extensions overview, security threats and risks

 Security Testing Methodology Framework

 Applying the methodology - Demos

3

Introduction

 What are Firefox extensions?

 It‟s just software.

 Equivalent of ActiveX

 What extensions do?

 Extend, modify and control browser behaviour

 Provides extended/rich functionality and added features

 Different type of Firefox addons

 Extensions

 Plugins (Search Engine plugins) and Themes

4

5

XUL:

- provides UI to extensions

- combined with JavaScript,

CSS, HTML elements

-.xul file

XBL:

- allows creation of new widgets

- combined with CSS, XML and

XUL

XPConnect:

- middle layer allows JavaScript

to interface with XPCOM

XPCOM:

- reusable

components/interfaces

- interact with low layer libraries:

network, I/O, file system, etc.

Chrome:

– privileged browser zone

– code fully trusted

Extension Security Model

 Mozilla extension security model is nonexistent

 Extension code is fully trusted by Firefox

 Vulnerability in extension code might result in full system

compromise

 No security boundaries between extensions

 An extension can silently modify/alter another extension

 XPCom C++ components subject to memory corruption

 Extensions vulnerabilities platform independent

 Lack of security policies to allow/deny Firefox access to internal API,

XPCom components, etc

 Any Mozilla application with the extension system is vulnerable to

same class of issues (e.g. Thunderbird)

6

The potential

 Statistics – Firefox Browser Market Share

 Beyond 20% globally since November 2008, more than 50% in certain

regions/countries

 Source: Marketshare - marketshare.hitslink.com
7

Extension downloads boom

 Statistics – AMO (addons.mozilla.org) Download Trend

 1 billion extension downloads from AMO – Nov 2008

8

Extensions are everywhere

Search

engines

Social

Networks

Services Software/OS/W

eb Application

Package

Extensions

Portals

Google Toolbar

Google

Browser Sync

Yahoo Toolbar

Ask.com

Toolbar

Del.icio.us

Extension

Facebook

Toolbar

AOL Toolbar

LinkedIn

Browser

Toolbar

Netcraft Anti-

Phishing

Toolbar

PhishTank

SiteChecker

Skype

AVG

Ubuntu

LiveLink

(OpenText)

AMO (addons

mozilla org)

Mozdev

Xulplanet

9

The weakest part of the chain

 Human Factors:

 Trust

 AMO Recommended Extensions

 Open Source

 Misconception = users expect extensions to be safe

 'according to Softpedia, it's 100% safe„

 NoScript/AdBlockPlus provides false sense of security

 chrome:// URI whitelisted on NoScript, any xss injection there

is not blocked

 Underestimated risks:

 the Mozilla page for building extensions doesn't mention the word

'security' once
10

Concerns on AMO

 Everyone can write extension and submit to AMO (even us :)

 AMO review process lacks complete security assessment

 Few extensions signed in AMO. Extensions are generally not “signed”.

Users trust unsigned extensions.

 Experimental extension (not approved yet) are publicly available
11

Extension And Malware

 Some people have already exploited this concept:

 FormSpy - 2006

 Downloader-AXM Trojan, poses as the legitimate NumberedLinks

0.9 extension

 Steal passwords, credit card numbers, and ebanking login details

 Firestarterfox - 2008

 Hijacks all search requests through multiple search engines and

redirects them through Russian site thebestwebsearch.net

 Vietnamese Language Pack - 2008

 Shipped with adware

 Might happen in the near future…

 Malware authors bribe/hack famous/recommended extension

developer/vendor

 Initial benign extension, malware is introduced in an 3rd/4th update 12

Security Testing Methodology

 No methodology exists to assess the security of Firefox

extensions

 Help to identify vulnerabilities and/or malicious components in any

Firefox extensions

 Will be published as a white paper

 Possible integration in the next OWASP testing guide

 Scope is to support:

 Developers – realise unsafe code practices, problems with AMO

and consequent risks

 Security professionals – provide a methodology framework to

utilise when testing Firefox extensions

13

Security Testing Methodology

 Isolated testing

 One extension at a time, different Oses, different Firefox versions

 Information gathering/Mapping extension content

 Extension Installation - Check type of installation:

 From a webpage

 AMO

 Installed by modifying Windows Registry

 Package content analysis

 Unzip XPI package (ZIP archive)

 Decompress any jar archive

 Look for suspicious files (e.g. .exe, .msi, etc)

 Particular attention to file install.js (even if deprecated):

14

Suspicious looking functions

 XPInstall API functions to look at:

 registerChrome();

 addFile();

 addFolder();

 dirRemove();

 isDirectory();

 getFolder();

 setPackageFolder();

 execute();

 getWinProfile();

 getWinRegistry();

 loadResources();

15

Where did the files go?

 Extension Post Installation

 Check following directories for anomalies:

 No single file should be in the extensions folder

 A single file containing an extension file path silently installs

an extension into Firefox

Windows Extension Default Path Unix/Linux Extension Default Path

C:\Documents and
Settings\test\Application\Data\Mozilla\
Firefox\Profiles\tzt1vrjc.default\extensions

/home/test/.mozilla/firefox/tzt1vrjc.default/exten

sions

C:\Program Files\Mozilla Firefox\Extensions N / A

16

Extensions directory

 Suspicious single file in extension folder:

17

Some tags to check…

 Check install manifest - install.rdf (must be a well-formatted xml)

 <em:minVersion> & <em:maxVersion> - <FF3 versions might

include deprecated/unsecured components. Must match update

manifest file

 <em:type> - code 32 = Multiple Item Package (more than one

extension installed at the same time)

 <em:about>, <em:options> - these might contain malicious XSS

payload via data: URI. Payload is executed in chrome zone

 <em:update> https with valid SSL certificate (check ciphers) or

HTTP + digital signature and hashed key

 <em:hidden> - if set to true, extension won‟t appear in the Addon

manager

 <em:name> - FF does not check if the name is already in use by

other extensions - Extension name can mislead users

18

Which one is the right one? ;-)

19

Verified or not verified?

20

chrome.manifest

 chrome.manifest file – the chrome register

 Chrome content/locale/skin directives should not point to other

extension folders

 Also check for:

 resource://path/extensionfolder/ - protocol

 Exposes the extension path to untrusted browser zone

 contentaccessible=yes - flag

 Allows extension content to be used directly from untrusted

zone – e.g. <script src=chrome://sample/content/my.js>

 xpcnativewrappers=no - flag

 Disables wrapper protection

 Exposes chrome extension object/functions to untrusted

content

21

22

Extension XUL might

overlay standard Firefox UI

gadgets

XUL Overlays are specified

in the chrome register

Extension overlays can be

merged into the Firefox UI

Let’s use the extension…

 Familiarise with the extension

 Enable extension, make sure to use 100% functionality

 Check for use of unused/deprecated functions, elements and

comments in the source code

 DOM Diff

 Compare the DOM of a test page with the extension

enabled/disabled

 Identify extension functions/objects available on DOM for:

 logical flaw bugs

 fuzzing

 unsafe/dangerous functions

 injection points

 exposed extension settings
23

DOM diff

 Use of Mozrepl to create a JavaScript shell

 Connect with a Python script via telnet

 Extract DOM for the target page with extension enabled/disabled & diff

 Approaches to DOM diff method:

 Manually review the diff files:

 some elements might be confusing and change every time the

browser is closed/reloaded

Extension Enabled Extension Disabled

Untrusted zone

chrome://browser/con

tent/browser.xul

24

 Probing extension code

 Probes or breakpoints can be used to better follow data flow within

the extension

 Extensions can be unpacked, modified, repacked and re-installed

or modified directly

 Sandbox – area where JavaScript has both web and chrome privileges

 Check: Components.utils.Sandbox and evalInSandbox()

 If JSON is used, check that is not directly used in evalInSandbox()

Debugging and Sandbox

25

XPCOM Components

 XPCOM components

 Check extensions components/ folder

 Security assessment:

 Manual source code review for XPCOM in JavaScript (.js)

 Reverse engineer compiled XPCOM (.dll, .so)

 XPCOM might be:

 Vulnerable per se

 Used in an unsafe way

 Check – grep in the extension source code for:

 Components.classes – identify each XPCOM component used

 netscape.security.PrivilegeManager.enablePrivilege("Universa

lXPConnect") – identify privileged JavaScript code

 wrappedJSObject – identify exposed chrome and xpcom objects

26

Some XPCOM interfaces to check

 MXR (Mozilla Cross-Reference) reference for Mozilla components

27

XPCOM Interface Possible Impact

nsIHistoryListener Notifies when a new document is opened to a third

party

nsIHttpChannel Allows access to HTTP GET query parameters

(e.g. authentication tokens)

nsIPasswordManager Might reveal user stored password

nsIRDFDataSource Write access critical internal data objects

(extension manager)

nsICookieManager Expose user cookies

nsIDownloader Download malicious file into user file system

Wrappers, wrappers…

 wrappedJSObject

 Xpconnect wrapping – hides unsupported or undefined component

interfaces

 Xpcnativewrappers

 Protects chrome code from untrusted content

 In FF3: win as window object

 Read, write, delete on win.wrappedJSObject properties is safe

 But: function objects, call back functions, objects used in chrome

can be unsafe (BUG)

 In <FF3: Not really safe – every DOM properties/methods of

win_object.wrappedJSObject must be protected 28

Common pitfalls

 Attention to:

 window.openDialog -> opens any URI with chrome privileges and can

pass arguments (callbacks functions can be passed as well)

 Check data exchange between chrome and content:

 Example: custom data exchanged via custom DOM events:



 XSS payload in untrusted zone (malicious external site):

29

Authentication and Logic

 Authentication And Authorisation Testing

 Some extensions authenticate to a site, third party portal (testing

scope)

 Some extensions expose credentials over insecure channel (GET over

HTTP) and do not handle cookies

 Attacking Extension Logic flaws

 Bypass of logical sequence of steps = finding

 Extension supposes a function x() can only be invoked by a certain

event (onclick)

 Call x() directly or by simulating the required event via DOM

methods

30

XSS or Cross Context Scripting

 Data validation testing

 Any input rendered in the chrome is a potential XSS injection point

 XSS in chrome is privileged code!!

 It can interface with XPConnect and XPCOM = 0wn3d!

 No SOP restrictions!

 Cannot be blocked by NoScript!

31

XSS disclosing /etc/passwd

32

Testing for XSS

 Run Firefox with dump() enabled and console active

 browser.dom.window.dump.enabled=true

 firefox.exe -console

 To confirm execution of our XSS payload, generate an error into

console – dump(error);

 Is our XSS in Chrome? Check all windows properties - not just window

33

Useful XSS payloads

 Check if nsIScriptableUnescapeHTML.parseFragment() is used.

 Lack of this might mean use of input black-list filters

34

Method Description Payload

iframe with data URI and

base64 payload

<iframe src =

„data:text/html;base64,base64XSSpayloadhere‟>

Recursive iframes <iframe src = “data:text/html,<iframe src =

„data:text/html;base64,base64iframe+data+XSSpa

yload‟> </iframe”></iframe>

Embedded XSS <embed src=„javascript:XSSpayload‟>

XSS on DOM events

XUL injection <![CDATA[“<button id=“1” label=“a”

oncommand=„alert(window)‟ />”]]>

XBL injection style=“-moz-binding:url(data:text/xml;charset=utf-

8,XBL)”

Example exploits

 Remote Code Execution Payload – invoking cmd.exe

35

Example exploits - 2

 Reverse Shell Using XHR – contents of base64 payload

36

Example exploits - 3

 Local File Disclosure - /etc/passwd

37

Security Testing Methodology

 Other attacks/Misc

 Cross Security Domain Leaks

 Check for use of external JavaScript files:

External JavaScript files can be changed or compromised

 Myjavascript.js runs as privileged code in the chrome zone

38

Tools

 Firebug – provides console, monitor and debugging features

 Chromebug – Firebug for chrome, XUL

 WebDeveloper – allows more control on page elements, cookies

 XPComViewer – shows registered XPCOM components/interfaces

 Venkman - JavaScript Debugger

 Console2 – advanced error console

 ChromeList – File viewer for installed extensions

 Execute JS - enhanced JavaScript-Console

 DOM Inspector – allows inspecting the DOM

 Burp – web proxy

 Mozrepl – js shell via telnet service

 Sysinternals Tools – regmon, filemon, tcpmon, etc.

39

Applying The Methodology

 Disclosure summary

 Total number of potentially affected users: 23,000,000+

40

Extension

Name

Date Disclosed Vendor Response

Date

Fix Date

WizzRSS 2009/02/18 2009/02/18 2009/03/20

CoolPreviews 2009/03/05 No response, silently
fixed

2009/04/20

FireFTP N/A N/A 2009/02/19

Undisclosed 2009/02/16 2009/02/16 N/A

Undisclosed 2009/03/05 2009/03/05 2009/03/14

Undisclosed 2009/02/27 N/A N/A

FireFTP

 FireFTP < 1.1.4

 Downloads: 10,579,802

 Issue:

 HTML and JavaScript in a server‟s welcome message is evaluated

when connecting to an FTP server.

 The code is executed in the chrome privilege zone

 Filtering/Protection:

 None.

 Exploit:

 BeEF (http://www.bindshell.net/beef)

 Local File Disclosure

41

http://www.bindshell.net/beef

Demo

42

CoolPreviews

 CoolPreviews – 2.7

 Total Downloads: 6,766,207

 Issue:

 URI is passed to the CoolPreviews Stack without any filtering.

 A data: URI is accepted and its content is rendered in the chrome

privileged zone.

 User triggers exploit by adding the malicious link to the CoolPreviews

stack (right-click by default)

 Filtering/Protection:

 No use of URI whitelist

 Exploit:

 data:text/html,base64;payloadbase64encoded

43

Demo

44

WizzRSS Family

 WizzRSS (<3.1.0.0), WizzRSS Lite (<3.0.0.9b)

 Downloads: 3,253,326

 Issue:

 HTML and JavaScript in the <description> tags of RSS feeds is

executed in the chrome security zone.

 JavaScript is encoded in base64 or used as the source of an iframe

 Hovering over a malicious feed item executes the JavaScript

 Filtering/Protection:

 <> and <script> tags are stripped

 Exploit:

 <iframe

src="data:text/html;base64,base64encodedjavascript">&

lt;/iframe>
45

WizzRSS Demo

46

Security Disclosure

 Security disclosure is a new process to extension

developers/vendors

 Security is underestimated/not understood

 No secure flag for bug submission on Bugzilla for extensions

 The bug details and the discussion is public.

 In some cases, it is very difficult to find a security contact for the

vendor

 Few posts regarding security vulnerabilities in Firefox extensions in

sec mailing-lists as Full Disclosure.

47

Recap…

 Extensions overview, security threats and risks

 Extension security model

 The potential

 Concerns on AMO

 Malware

 Security Testing Methodology Framework

 From the installation to deployment

 XPCOM components and wrappers

 Authentication, logical flaws

 XSS in Chrome

 Exploit examples

 Applying the methodology – Demos

48

Questions?

 Thanks!

Roberto.suggi@security-assessment.com

Nick.freeman@security-assessment.com

49

mailto:Roberto.suggi@security-assessment.com
mailto:Roberto.suggi@security-assessment.com
mailto:Roberto.suggi@security-assessment.com
mailto:Nick.freeman@security-assessment.com
mailto:Nick.freeman@security-assessment.com
mailto:Nick.freeman@security-assessment.com

References

 Research and publications on the topic

 Extensible Web Browser Security - Mike Ter Louw, Jin Soon Lim,

and V.N. Venkatakrishnan

 http://www.mike.tl/view/Research/ExtensibleWebBrowserSecur

ity

 Bachelor thesis on Firefox extension security - Julian Verdurmen

 http://jverdurmen.ruhosting.nl/BachelorThesis-Firefox-

extension-security.html

 Attacking Rich Internet Applications (kuza55, Stefano Di Paola)

 http://www.ruxcon.org.au/files/2008/Attacking_Rich_Internet_A

pplications.pdf

50

http://www.mike.tl/view/Research/ExtensibleWebBrowserSecurity
http://www.mike.tl/view/Research/ExtensibleWebBrowserSecurity
http://jverdurmen.ruhosting.nl/BachelorThesis-Firefox-extension-security.html
http://jverdurmen.ruhosting.nl/BachelorThesis-Firefox-extension-security.html
http://jverdurmen.ruhosting.nl/BachelorThesis-Firefox-extension-security.html
http://jverdurmen.ruhosting.nl/BachelorThesis-Firefox-extension-security.html
http://jverdurmen.ruhosting.nl/BachelorThesis-Firefox-extension-security.html
http://jverdurmen.ruhosting.nl/BachelorThesis-Firefox-extension-security.html
http://jverdurmen.ruhosting.nl/BachelorThesis-Firefox-extension-security.html
http://www.ruxcon.org.au/files/2008/Attacking_Rich_Internet_Applications.pdf
http://www.ruxcon.org.au/files/2008/Attacking_Rich_Internet_Applications.pdf

References

 Firebug – Petko. D. Petkov, Thor Larholm, 06 april 2007

 http://larholm.com/2007/04/06/0day-vulnerability-in-firebug/

 http://www.gnucitizen.org/blog/firebug-goes-evil/

 Tamper Data XSS - Roee Hay – 27 jul 2008

 http://blog.watchfire.com/wfblog/2008/07/tamper-data-cro.html

 GreaseMonkey – ISS – 21 Jul 2005

 http://xforce.iss.net/xforce/xfdb/21453

 Sage RSS Reader (pdp & David Kierznowski)

 http://www.gnucitizen.org/blog/cross-context-scripting-with-

sage/

51

http://larholm.com/2007/04/06/0day-vulnerability-in-firebug/
http://larholm.com/2007/04/06/0day-vulnerability-in-firebug/
http://larholm.com/2007/04/06/0day-vulnerability-in-firebug/
http://larholm.com/2007/04/06/0day-vulnerability-in-firebug/
http://larholm.com/2007/04/06/0day-vulnerability-in-firebug/
http://larholm.com/2007/04/06/0day-vulnerability-in-firebug/
http://larholm.com/2007/04/06/0day-vulnerability-in-firebug/
http://www.gnucitizen.org/blog/firebug-goes-evil/
http://www.gnucitizen.org/blog/firebug-goes-evil/
http://www.gnucitizen.org/blog/firebug-goes-evil/
http://www.gnucitizen.org/blog/firebug-goes-evil/
http://www.gnucitizen.org/blog/firebug-goes-evil/
http://blog.watchfire.com/wfblog/2008/07/tamper-data-cro.html
http://blog.watchfire.com/wfblog/2008/07/tamper-data-cro.html
http://blog.watchfire.com/wfblog/2008/07/tamper-data-cro.html
http://blog.watchfire.com/wfblog/2008/07/tamper-data-cro.html
http://blog.watchfire.com/wfblog/2008/07/tamper-data-cro.html
http://xforce.iss.net/xforce/xfdb/21453
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage/
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage/
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage/
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage/
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage/
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage/
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage/
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage/
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage/

