
© 2009 Security-Assessment.com

Reversing JavaScript

Presented By Roberto Suggi Liverani

Slide:2 © 2009 Security-Assessment.com

Who am I?

 Roberto Suggi Liverani

 Security Consultant, CISSP - Security-Assessment.com

 4+ years in information security, focusing on web application and
network security

 OWASP New Zealand founder/leader

 Personal blog: http://malerisch.net

Slide:3 © 2009 Security-Assessment.com

Agenda

 Introduction

 Technologies: JavaScript, DOM, Ajax, JSON

 Security: JavaScript Security Model

 Practical tips

 JavaScript Analysis\Debugging Tools

 Finding vulnerabilities in JavaScript – DOM XSS

 Reversing JavaScript – Ajax

 Reversing JavaScript – JSON

 Obfuscated JavaScript – Deobfuscation techniques

 Dean Edwards Packer

 More complex cases

Slide:4 © 2009 Security-Assessment.com

Technology - JavaScript

 JavaScript

 JavaScript provides five primitive data types: number, string,
Boolean, undefined, and null.

 Number: var x = 3.14;

 String: var string1 = "This is a string";

 Boolean: var a = true

 Undefined and null do not store data. var x; var y = null;

 Reference types includes the composite types (objects and
arrays) and functions. Arrays and functions are special kinds of
objects.

 Object: navigator.appVersion (navigator is an object)

 Array: var x = myArray[5];

 Each primitive type is associated with an object that provides
methods useful for manipulating that kind of data.

Slide:5 © 2009 Security-Assessment.com

Technology - JavaScript

 JavaScript Operators:

 Mathematical (+, –, *, and %)

 Bitwise (&, |, ^, ~, << >> >>> Zero-fill right shift)

 Comparison (<<, >>, ==, ===, !=, >>=, and <<)

 Assignment (=, +=, and so on)

 Logical (&&, ||, and !)

 Conditional operator (?:)

 String concatenation operator (+)

Slide:6 © 2009 Security-Assessment.com

Technology - JavaScript

 JavaScript Statements:

 if (expression) statement or block
else statement or block

 switch (expression)
{
 case condition 1: statement(s)
 break;
 default: statement(s)
}

 while (expression)
 statement or block of statements to execute

 do {statement(s);} while (expression);

 for (initialization; test condition; iteration statement)
 loop statement or block

 with (object) { statement(s); }

 Labels can be used with break and continue.

Slide:7 © 2009 Security-Assessment.com

Technology - JavaScript

 JavaScript functions

 Function: function functionname(parameter-list)
{ statements }

function addThree(arg1, arg2, arg3)
{ return (arg1+arg2+arg3); }

 Function as object:
var sayHello = new Function("alert('Hello there');");

 Functions can be recursive (function within a function)

 JavaScript Global and local variables

 var x = 5; //global variable
function z() { var x = 3; //local variable }

Slide:8 © 2009 Security-Assessment.com

Technology - JavaScript

 JavaScript Objects: user-defined, built-in, browser, and document

 User-defined: custom objects

 Browser: objects that most browsers support

 Built-in: Built-in objects are provided by the JavaScript language
itself (Array, Boolean, Date, Math, Number and String)

 Document: objects are part of the Document Object Model
(DOM), as defined by the W3C

 Type Example Implementation
Provided By

Governing
Standard

User-defined Programmer-defined
Customer or Circle

Programmer None

Built-in Array, Math The browser via its
JavaScript engine

ECMA-262

Browser Window, Navigator The browser None (though some
portions adhere to an
ad hoc standard)

Document Image,
HTMLInputElement

The browser via its
DOM engine

W3C DOM

Slide:9 © 2009 Security-Assessment.com

Technology - JavaScript

 JavaScript objects:

 var myString = new String("Hello world");
alert(myString.length);
x=myString.upperCase(); alert(x);

 myString is a built-in String object.
Length = the property of the myString object.

 Properties that are functions are called methods (such as
upperCase();).

 JavaScript Regular expressions are the tool JavaScript provides for
matching and manipulating string data based on patterns.

 var pattern = new RegExp("http");
pattern.test("HTTP://WWW.W3C.ORG/");

 Test() method returns a Boolean indicating whether the string
given as its argument matches the pattern

Slide:10 © 2009 Security-Assessment.com

Technologies - DOM

 DOM (Document Object Model)

 Basic Object model for all modern browsers

 HTML Document model – two basic examples

Slide:11 © 2009 Security-Assessment.com

Technologies - DOM

 DOM – Object naming, properties, methods and events

 Naming and references through attribute ―id‖ or ―name‖

 <div id=―1‖> - <p id=―h‖> - <form name=―test‖>

 Object: Properties, methods and events

 <input type=―button‖> -> type is a property, button is the
value property of type.

 Depending on the object, none or multiple methods are
available such as submit(), onfocus(), etc.

 Events -> Events are actions that take place in a document,
usually as the result of user activity.

 <input type=―button‖ onclick=―j();‖> - onclick is an event

Slide:12 © 2009 Security-Assessment.com

Technologies - DOM

 Traversing DOM

 Reaching Elements in a Document

 document.getElementById('id ’): Retrieves the element with
the given id as an object

 document.getElementsByTagName('tagname '): Retrieves all
elements with the tag name tagname and stores them in an
array-like list

 Reading Element Attributes, Node Values, and Other Node Data

 node.getAttribute('attribute'): Retrieves the value of the
attribute with the name attribute

 node.setAttribute('attribute', 'value'): Sets the value of the
attribute with the name attribute to value

 node.nodeType: Reads the type of the node (1 = element, 3
= text node)

Slide:13 © 2009 Security-Assessment.com

Technologies - DOM

 node.nodeName: Reads the name of the node (either
element name or #textNode)

 node.nodeValue: Reads or sets the value of the node (the
text content in the case of text nodes)

 Navigating Between Nodes

 node.previousSibling: Retrieves the previous sibling node and
stores it as an object.

 node.nextSibling: Retrieves the next sibling node and stores
it as an object.

 node.childNodes: Retrieves all child nodes of the object and
stores them in an list.

 There are shortcuts for the first and last child node, named
node.firstChild and node.lastChild.

 node.parentNode: Retrieves the node containing node.

Slide:14 © 2009 Security-Assessment.com

Technologies - DOM

 Creating New Nodes

 document.createElement(element): Creates a new element
node with the name element.

 document.createTextNode(string): Creates a new text node
with the node value of string.

 newNode =node.cloneNode(bool): Creates newNode as a
copy (clone) of node. If bool is true, the clone includes
clones of all the child nodes of the original.

 node.appendChild(newNode): Adds newNode as a new (last)
child node to node.

 node.insertBefore(newNode,oldNode): Inserts newNode as a
new child node of node before oldNode.

 node.removeChild(oldNode): Removes the child oldNode
from node.

Slide:15 © 2009 Security-Assessment.com

Technologies - DOM

 node.replaceChild(newNode, oldNode): Replaces the child
node oldNode of node with newNode.

 element.innerHTML: Reads or writes the HTML content of
the given element as a string— including all child nodes with
their attributes and text content

Slide:16 © 2009 Security-Assessment.com

Technologies – JavaScript Security

 JavaScript comes with some protections and security:

 Some examples:

 No direct access to write or delete files or directories

 No networking primitives of any type

 Only certain History object methods exposed: back(), forward(),
and go().

 FileUpload object property value cannot be set.

 No form submit() to a mailto: or news: URIs.

 No browser window closure unless the script opened/created the
window itself.

 No creation of window that is smaller than 100 pixels on a side
(other similar actions are forbidden).

 Event object properties cannot be set.

Slide:17 © 2009 Security-Assessment.com

Technology – JavaScript Security

 SOP (Same Of Origin Policy)

 Script can read only the properties of windows and documents
that have the same origin as the script itself.

 The same-origin policy does not actually apply to all properties
of all objects in a window from a different origin.

 Window objects origin-policy exceptions:

 Location object

 postMessage()

 frames attribute

 XXX4 method

 Document.domain can also be used to relax SOP restrictions

 aa.domain.com and bb.domain.com can communicate if
document.domain = domain.com

Slide:18 © 2009 Security-Assessment.com

Technology – JavaScript Security

 Some examples of SOP in action

URLs Cross – Scripting
allowed?

Comments

http://www.example.com:8080/script1.js NO Port number doesn’t
match. http://www.example.com/script2.js

http://www.example.com/script1.js NO Protocol type doesn’t
match. https://www.example.com/script2.js

http://www.example.com/script1.js NO Browser will not perform
domain name resolution. http://192.168.0.10/script2.js

http://sub.example.com/script1.js NO Subdomains treated as
separate domains. http://www.example.com/script2.js

http://www.example.com/hello/script1.js YES Domain name is the
same. http://www.example.com/bye/script.2.js

http://www.example2.com/script1.js NO Different domain names.
http://www.example1.com/script2.js

Slide:19 © 2009 Security-Assessment.com

Technologies - Ajax

 Ajax (Asynchronous Javascript And XML)

 Ajax = multiple technologies working together

 Components:

 HTML/XHTML

 Necessary to display the information

 JavaScript

 Necessary to initiate the client-server communication and
manipulate the DOM to update the web page

 Document Object Model (DOM)

 Necessary to change portions of an XHTML page without
reloading it.

 Server-side processing

 There is no Ajax without a stable, responsive server waiting
to send content to the engine

Slide:20 © 2009 Security-Assessment.com

Technologies - Ajax

 Ajax Components

 Cascading Style Sheet (CSS)

 In an Ajax application, the styling of a user interface may be
modified interactively through CSS

 Extensible Markup Language (XML)

 Data exchange format

 Extensible Stylesheet Language Transformations (XSLT)

 Transforms XML to XHTML

 XMLHttpRequest object

 XMLHttpRequest object allows retrieving data from the web
server as a background activity

Slide:21 © 2009 Security-Assessment.com

Technologies - Ajax

 Ajax Components – Simple diagram

Slide:22 © 2009 Security-Assessment.com

Technologies - Ajax

 Traditional web model vs Ajax

Slide:23 © 2009 Security-Assessment.com

Technologies - JSON

 JSON (JavaScript Object Notation)

 Simple data transfer format that can be used to serialise
arbitrary data

 Data processed directly by JavaScript interpreters

 Commonly employed in Ajax applications – (alternative to XML)

 JSON Message Example - Message is treated as JavaScript array

 JavaScript constructs the array and then processes its contents

 JSON – Security implications

 Same Of Origin (SOP) applies for JavaScript code from different
domains but not for JavaScript data (JSON) from different
domains

[

[‘Jeff’, ‘1741024918’, ‘ginger@microsoft.com’],

[‘C Gillingham’, ‘3885193114’, ‘c2004@symantec.com’],

[‘Mike Kemp’, ‘8041148671’, ‘fkwitt@layerone.com’],

[‘Wade A’, ‘5078782513’, ‘kingofbeef@ngssoftware.com’]

]

Slide:24 © 2009 Security-Assessment.com

Practical tips to JavaScript Reversing

Slide:25 © 2009 Security-Assessment.com

Basics

 JavaScript Analysis/Debugging Tools

 WebDeveloper

 Firebug – Debugger, Console, Playing with DOM

 Venkman – Debugger

 Basic HTML/DOM/JavaScript analysis

 Looking at the source code

 Looking at the DOM

 Looking at the generated source code

 Understanding DOM, JavaScript functions and events

 Traversing DOM – Pay attention to:

 document.getElementById(―id‖)

 document.getElementsByTagName(―name‖)

Slide:26 © 2009 Security-Assessment.com

Reversing – Breakpoint with Firebug

Slide:27 © 2009 Security-Assessment.com

Reversing – Breakpoints and Stack

Slide:28 © 2009 Security-Assessment.com

DOM Analysis

Slide:29 © 2009 Security-Assessment.com

Venkman Debugger

Slide:30 © 2009 Security-Assessment.com

Finding XSS in DOM

 DOM XSS or Type 0 XSS

 Find injection point

 How do we know it’s a DOM XSS?

 DOM XSS does not appear in ―View Source‖ ;-)

 Look for the the following methods (from Attacking Rich Internet
Application – see references):

 document.URL

 document.URLUnencoded

 document.location (and many of its properties)

 document.referrer

 window.location (and many of its properties)

 Write raw HTML, e.g.:

 document.write(…)

 document.writeln(…)

 document.body.innerHtml=…

Slide:31 © 2009 Security-Assessment.com

Finding XSS in DOM

Slide:32 © 2009 Security-Assessment.com

Finding XSS in DOM

 Directly modifying the DOM (including DHTML events), e.g.:

 document.forms[0].action=…

 document.attachEvent(…)

 document.create…(…)

 document.execCommand(…)

 document.body. …

 window.attachEvent(…)

 Replacing the document URL, e.g.:

 document.location=…

 document.location.hostname=…

 document.location.replace(…)

 document.location.assign(…)

 document.URL=…

 window.navigate(…)

Slide:33 © 2009 Security-Assessment.com

Finding XSS in DOM

 Opening/modifying a window, e.g.:

 document.open(…)

 window.open(…)

 window.location.href=…

 Directly executing script, e.g.:

 eval(…)

 window.execScript(…)

 window.setInterval(…)

 window.setTimeout(…)

 DOM XSS should not always result in JavaScript execution

 New DOM XSS attacks might include:

 Modify/abuse sensitive objects

 Modify DOM/HTML Objects

 Leak and insert cookies (document.cookie)

 Perform directory traversal with XHR

Slide:34 © 2009 Security-Assessment.com

JavaScript and Ajax

 Reversing JavaScript – Ajax

 Intercept XHR (XMLHttpRequest) requests/responses with
Firebug (console and profiler)

 Pay attention to inline JavaScript events – they might trigger
XHR (Fire inline addon).

 Ajax is just a client-side technology – needs to be considered as
standard web application.

 Look for Ajax bridging – this is used to evade SOP between two
endpoints on different domains

 XML and XPath might be used in conjunction with Ajax

 Understand how Ajax engine constructs the request and
interfaces to XPath -> XML file.

 Ajax can also interface with a database (SQL).

 Understand how Ajax engine constructs the request and
interfaces with the database.

Slide:35 © 2009 Security-Assessment.com

JavaScript and Ajax

Slide:36 © 2009 Security-Assessment.com

JSON

 Reversing JavaScript – JSON

 Find the JSON service – check HTTP GET and POST requests

 Understand what type of JSON data is passed between client
and server side – are callback functions used? Like showc();
below:

 Injection in JSON can lead to JavaScript execution (as in eval())

 Check if the JSON comes as JSON label or not (note if brackets
are used to wrap JSON data like
({"errorsNum":2,"error":["Wrong email!","Wrong hobby!"]})

showC (

[

[‘test’, ‘1741024918’, ‘test@test.com’],

[‘test2’, ‘3885193114’, ‘test2@test.com’],

]);

Slide:37 © 2009 Security-Assessment.com

JSON

Slide:38 © 2009 Security-Assessment.com

JSON

 Attacking JSON – another way to do CSRF

 Use the same JavaScript JSON parser to handle the data from a
different domain

 Exploit CSRF of the victim application

 Before JavaScript 2.0, override of the Array function was used to
handle JSON data as in the following example:

 Setter needs to be used for objects or arrays to get JSON data
under control. JSON hijacking JavaScript code has to be
customised for each browser.

<script>

function array() {

var obj = this;

var ind = 0;

var getNext = function(x) {

obj[ind++] setter = getNext;

if (x) alert(‘Data stolen from array:’+x.toString());

}

this[ind++] setter = getNext;

}

<script src=‘http://jsonservice’></script>

Slide:39 © 2009 Security-Assessment.com

JSON

 Attacking JSON

 In case of callback function:

 Then, following code can be used in the malicious site to extract
data from the JSON service:

showC (

[

[‘test’, ‘1741024918’, ‘test@test.com’],

[‘test2’, ‘3885193114’, ‘test2@test.com’],

]);

<script>

function showC(a) {

alert(a);

}

</script>

<script

src=”URLwhichReturnstheJSONabove”></script>

Slide:40 © 2009 Security-Assessment.com

Unpacking/Deofuscating

 JavaScript deobfuscation/unpacking techniques

 Dean Edwards simple JavaScript packer

 Unpacking Dean Edwards with Malzilla (2 clicks)

 More complex case:

 Screen shots:

 1) Simple analysis of obfuscated JavaScript

 Deciphering shellcode

 Use of document.createelement

 2) Case of data to be deciphered that is not a part of the
script

 Use of arguments.calle.tostring

 Data attached to onload event

Slide:41 © 2009 Security-Assessment.com

Unpacking JavaScript

Slide:42 © 2009 Security-Assessment.com

Case I

Slide:43 © 2009 Security-Assessment.com

Case II

Slide:44 © 2009 Security-Assessment.com

Unpacking/Deofuscating

 Demo

 1) JavaScript de-obfuscation and shell code analysis

 2) LuckySploit

 New exploit kit - set of .HTML files

 Used for spreading the malware with the method of
Drive-by-Download

 Script using RSA algorithm

 Script only displayed once – if u browse back, the
script won’t appear again

Questions?

© 2007 Security-Assessment.com

http://www.security-assessment.com

Roberto.suggi@security-assessment.com

mailto:Roberto.suggi@security-assessment.com
mailto:Roberto.suggi@security-assessment.com
mailto:Roberto.suggi@security-assessment.com

Slide:46 © 2009 Security-Assessment.com

Resources

 DebugBar - http://www.my-debugbar.com/wiki/Doc/DebugbarInstall

 Firebug - http://getfirebug.com/docs.html

 WebDevHelper - http://projects.nikhilk.net/WebDevHelper/

 JavaScript Debugger - http://www.mozilla.org/projects/venkman/

 JavaScript Debugger Tutorial - http://devedge-
temp.mozilla.org/viewsource/2002/venkman/01/index_en.html

 JSON -
http://directwebremoting.org/blog/joe/2007/03/06/json_is_not_as_s
afe_as_people_think_it_is_part_2.html

 JSON/Twitter Example -
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-
friends-did-last-summer/

 Safety of JSON - http://ajaxian.com/archives/the-safety-of-json

 Forum Discussion – JSON -
http://sla.ckers.org/forum/read.php?2,25788

http://www.my-debugbar.com/wiki/Doc/DebugbarInstall
http://www.my-debugbar.com/wiki/Doc/DebugbarInstall
http://www.my-debugbar.com/wiki/Doc/DebugbarInstall
http://getfirebug.com/docs.html
http://projects.nikhilk.net/WebDevHelper/
http://www.mozilla.org/projects/venkman/
http://devedge-temp.mozilla.org/viewsource/2002/venkman/01/index_en.html
http://devedge-temp.mozilla.org/viewsource/2002/venkman/01/index_en.html
http://devedge-temp.mozilla.org/viewsource/2002/venkman/01/index_en.html
http://directwebremoting.org/blog/joe/2007/03/06/json_is_not_as_safe_as_people_think_it_is_part_2.html
http://directwebremoting.org/blog/joe/2007/03/06/json_is_not_as_safe_as_people_think_it_is_part_2.html
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://ajaxian.com/archives/the-safety-of-json
http://ajaxian.com/archives/the-safety-of-json
http://ajaxian.com/archives/the-safety-of-json
http://ajaxian.com/archives/the-safety-of-json
http://ajaxian.com/archives/the-safety-of-json
http://ajaxian.com/archives/the-safety-of-json
http://ajaxian.com/archives/the-safety-of-json
http://sla.ckers.org/forum/read.php?2,25788

Slide:47 © 2009 Security-Assessment.com

References

 LuckySploit - http://evilfingers.blogspot.com/2009/02/luckysploit-
right-hand-of-zeus.html

 AJAX Security - http://www.cgisecurity.com/ajax/

 Ajax Security Basics - http://www.securityfocus.com/infocus/1868/2

 JavaScript 2.0: The Complete Reference, Second Edition by Thomas
Powell and Fritz Schneider - ISBN:0072253576

 JavaScript: The Definitive Guide, 4th Edition By David Flanagan -
ISBN : 0-596-00048-0

 Pro JavaScript Techniques by John Resig ISBN: 1-59059-727-3

 Practical JavaScript™, DOM Scripting, and Ajax Projects by Frank W.
Zammett – ISBN: 1-59059-816-4

 JavaScript® Bible, Sixth Edition by Danny Goodman – ISBN: 978-0-
470-06916-5

http://evilfingers.blogspot.com/2009/02/luckysploit-right-hand-of-zeus.html
http://evilfingers.blogspot.com/2009/02/luckysploit-right-hand-of-zeus.html
http://evilfingers.blogspot.com/2009/02/luckysploit-right-hand-of-zeus.html
http://evilfingers.blogspot.com/2009/02/luckysploit-right-hand-of-zeus.html
http://evilfingers.blogspot.com/2009/02/luckysploit-right-hand-of-zeus.html
http://evilfingers.blogspot.com/2009/02/luckysploit-right-hand-of-zeus.html
http://evilfingers.blogspot.com/2009/02/luckysploit-right-hand-of-zeus.html
http://evilfingers.blogspot.com/2009/02/luckysploit-right-hand-of-zeus.html
http://evilfingers.blogspot.com/2009/02/luckysploit-right-hand-of-zeus.html
http://www.securityfocus.com/infocus/1868/2

Slide:48 © 2009 Security-Assessment.com

 Attacking Rich Internet Applications – Stefano Di Paola, Kuza55 -
http://www.ruxcon.org.au/files/2008/Attacking_Rich_Internet_Appli
cations.pdf

 LuckySploit - http://novirusthanks.org/blog/2009/03/luckysploit-
new-exploit-kit/

http://www.ruxcon.org.au/files/2008/Attacking_Rich_Internet_Applications.pdf
http://www.ruxcon.org.au/files/2008/Attacking_Rich_Internet_Applications.pdf
http://novirusthanks.org/blog/2009/03/luckysploit-new-exploit-kit/
http://novirusthanks.org/blog/2009/03/luckysploit-new-exploit-kit/
http://novirusthanks.org/blog/2009/03/luckysploit-new-exploit-kit/
http://novirusthanks.org/blog/2009/03/luckysploit-new-exploit-kit/
http://novirusthanks.org/blog/2009/03/luckysploit-new-exploit-kit/
http://novirusthanks.org/blog/2009/03/luckysploit-new-exploit-kit/
http://novirusthanks.org/blog/2009/03/luckysploit-new-exploit-kit/

