
© 2009 Security-Assessment.com

Reversing JavaScript

Presented By Roberto Suggi Liverani

Slide:2 © 2009 Security-Assessment.com

Who am I?

 Roberto Suggi Liverani

 Security Consultant, CISSP - Security-Assessment.com

 4+ years in information security, focusing on web application and
network security

 OWASP New Zealand founder/leader

 Personal blog: http://malerisch.net

Slide:3 © 2009 Security-Assessment.com

Agenda

 Introduction

 Technologies: JavaScript, DOM, Ajax, JSON

 Security: JavaScript Security Model

 Practical tips

 JavaScript Analysis\Debugging Tools

 Finding vulnerabilities in JavaScript – DOM XSS

 Reversing JavaScript – Ajax

 Reversing JavaScript – JSON

 Obfuscated JavaScript – Deobfuscation techniques

 Dean Edwards Packer

 More complex cases

Slide:4 © 2009 Security-Assessment.com

Technology - JavaScript

 JavaScript

 JavaScript provides five primitive data types: number, string,
Boolean, undefined, and null.

 Number: var x = 3.14;

 String: var string1 = "This is a string";

 Boolean: var a = true

 Undefined and null do not store data. var x; var y = null;

 Reference types includes the composite types (objects and
arrays) and functions. Arrays and functions are special kinds of
objects.

 Object: navigator.appVersion (navigator is an object)

 Array: var x = myArray[5];

 Each primitive type is associated with an object that provides
methods useful for manipulating that kind of data.

Slide:5 © 2009 Security-Assessment.com

Technology - JavaScript

 JavaScript Operators:

 Mathematical (+, –, *, and %)

 Bitwise (&, |, ^, ~, << >> >>> Zero-fill right shift)

 Comparison (<<, >>, ==, ===, !=, >>=, and <<)

 Assignment (=, +=, and so on)

 Logical (&&, ||, and !)

 Conditional operator (?:)

 String concatenation operator (+)

Slide:6 © 2009 Security-Assessment.com

Technology - JavaScript

 JavaScript Statements:

 if (expression) statement or block
else statement or block

 switch (expression)
{
 case condition 1: statement(s)
 break;
 default: statement(s)
}

 while (expression)
 statement or block of statements to execute

 do {statement(s);} while (expression);

 for (initialization; test condition; iteration statement)
 loop statement or block

 with (object) { statement(s); }

 Labels can be used with break and continue.

Slide:7 © 2009 Security-Assessment.com

Technology - JavaScript

 JavaScript functions

 Function: function functionname(parameter-list)
{ statements }

function addThree(arg1, arg2, arg3)
{ return (arg1+arg2+arg3); }

 Function as object:
var sayHello = new Function("alert('Hello there');");

 Functions can be recursive (function within a function)

 JavaScript Global and local variables

 var x = 5; //global variable
function z() { var x = 3; //local variable }

Slide:8 © 2009 Security-Assessment.com

Technology - JavaScript

 JavaScript Objects: user-defined, built-in, browser, and document

 User-defined: custom objects

 Browser: objects that most browsers support

 Built-in: Built-in objects are provided by the JavaScript language
itself (Array, Boolean, Date, Math, Number and String)

 Document: objects are part of the Document Object Model
(DOM), as defined by the W3C

 Type Example Implementation
Provided By

Governing
Standard

User-defined Programmer-defined
Customer or Circle

Programmer None

Built-in Array, Math The browser via its
JavaScript engine

ECMA-262

Browser Window, Navigator The browser None (though some
portions adhere to an
ad hoc standard)

Document Image,
HTMLInputElement

The browser via its
DOM engine

W3C DOM

Slide:9 © 2009 Security-Assessment.com

Technology - JavaScript

 JavaScript objects:

 var myString = new String("Hello world");
alert(myString.length);
x=myString.upperCase(); alert(x);

 myString is a built-in String object.
Length = the property of the myString object.

 Properties that are functions are called methods (such as
upperCase();).

 JavaScript Regular expressions are the tool JavaScript provides for
matching and manipulating string data based on patterns.

 var pattern = new RegExp("http");
pattern.test("HTTP://WWW.W3C.ORG/");

 Test() method returns a Boolean indicating whether the string
given as its argument matches the pattern

Slide:10 © 2009 Security-Assessment.com

Technologies - DOM

 DOM (Document Object Model)

 Basic Object model for all modern browsers

 HTML Document model – two basic examples

Slide:11 © 2009 Security-Assessment.com

Technologies - DOM

 DOM – Object naming, properties, methods and events

 Naming and references through attribute ―id‖ or ―name‖

 <div id=―1‖> - <p id=―h‖> - <form name=―test‖>

 Object: Properties, methods and events

 <input type=―button‖> -> type is a property, button is the
value property of type.

 Depending on the object, none or multiple methods are
available such as submit(), onfocus(), etc.

 Events -> Events are actions that take place in a document,
usually as the result of user activity.

 <input type=―button‖ onclick=―j();‖> - onclick is an event

Slide:12 © 2009 Security-Assessment.com

Technologies - DOM

 Traversing DOM

 Reaching Elements in a Document

 document.getElementById('id ’): Retrieves the element with
the given id as an object

 document.getElementsByTagName('tagname '): Retrieves all
elements with the tag name tagname and stores them in an
array-like list

 Reading Element Attributes, Node Values, and Other Node Data

 node.getAttribute('attribute'): Retrieves the value of the
attribute with the name attribute

 node.setAttribute('attribute', 'value'): Sets the value of the
attribute with the name attribute to value

 node.nodeType: Reads the type of the node (1 = element, 3
= text node)

Slide:13 © 2009 Security-Assessment.com

Technologies - DOM

 node.nodeName: Reads the name of the node (either
element name or #textNode)

 node.nodeValue: Reads or sets the value of the node (the
text content in the case of text nodes)

 Navigating Between Nodes

 node.previousSibling: Retrieves the previous sibling node and
stores it as an object.

 node.nextSibling: Retrieves the next sibling node and stores
it as an object.

 node.childNodes: Retrieves all child nodes of the object and
stores them in an list.

 There are shortcuts for the first and last child node, named
node.firstChild and node.lastChild.

 node.parentNode: Retrieves the node containing node.

Slide:14 © 2009 Security-Assessment.com

Technologies - DOM

 Creating New Nodes

 document.createElement(element): Creates a new element
node with the name element.

 document.createTextNode(string): Creates a new text node
with the node value of string.

 newNode =node.cloneNode(bool): Creates newNode as a
copy (clone) of node. If bool is true, the clone includes
clones of all the child nodes of the original.

 node.appendChild(newNode): Adds newNode as a new (last)
child node to node.

 node.insertBefore(newNode,oldNode): Inserts newNode as a
new child node of node before oldNode.

 node.removeChild(oldNode): Removes the child oldNode
from node.

Slide:15 © 2009 Security-Assessment.com

Technologies - DOM

 node.replaceChild(newNode, oldNode): Replaces the child
node oldNode of node with newNode.

 element.innerHTML: Reads or writes the HTML content of
the given element as a string— including all child nodes with
their attributes and text content

Slide:16 © 2009 Security-Assessment.com

Technologies – JavaScript Security

 JavaScript comes with some protections and security:

 Some examples:

 No direct access to write or delete files or directories

 No networking primitives of any type

 Only certain History object methods exposed: back(), forward(),
and go().

 FileUpload object property value cannot be set.

 No form submit() to a mailto: or news: URIs.

 No browser window closure unless the script opened/created the
window itself.

 No creation of window that is smaller than 100 pixels on a side
(other similar actions are forbidden).

 Event object properties cannot be set.

Slide:17 © 2009 Security-Assessment.com

Technology – JavaScript Security

 SOP (Same Of Origin Policy)

 Script can read only the properties of windows and documents
that have the same origin as the script itself.

 The same-origin policy does not actually apply to all properties
of all objects in a window from a different origin.

 Window objects origin-policy exceptions:

 Location object

 postMessage()

 frames attribute

 XXX4 method

 Document.domain can also be used to relax SOP restrictions

 aa.domain.com and bb.domain.com can communicate if
document.domain = domain.com

Slide:18 © 2009 Security-Assessment.com

Technology – JavaScript Security

 Some examples of SOP in action

URLs Cross – Scripting
allowed?

Comments

http://www.example.com:8080/script1.js NO Port number doesn’t
match. http://www.example.com/script2.js

http://www.example.com/script1.js NO Protocol type doesn’t
match. https://www.example.com/script2.js

http://www.example.com/script1.js NO Browser will not perform
domain name resolution. http://192.168.0.10/script2.js

http://sub.example.com/script1.js NO Subdomains treated as
separate domains. http://www.example.com/script2.js

http://www.example.com/hello/script1.js YES Domain name is the
same. http://www.example.com/bye/script.2.js

http://www.example2.com/script1.js NO Different domain names.
http://www.example1.com/script2.js

Slide:19 © 2009 Security-Assessment.com

Technologies - Ajax

 Ajax (Asynchronous Javascript And XML)

 Ajax = multiple technologies working together

 Components:

 HTML/XHTML

 Necessary to display the information

 JavaScript

 Necessary to initiate the client-server communication and
manipulate the DOM to update the web page

 Document Object Model (DOM)

 Necessary to change portions of an XHTML page without
reloading it.

 Server-side processing

 There is no Ajax without a stable, responsive server waiting
to send content to the engine

Slide:20 © 2009 Security-Assessment.com

Technologies - Ajax

 Ajax Components

 Cascading Style Sheet (CSS)

 In an Ajax application, the styling of a user interface may be
modified interactively through CSS

 Extensible Markup Language (XML)

 Data exchange format

 Extensible Stylesheet Language Transformations (XSLT)

 Transforms XML to XHTML

 XMLHttpRequest object

 XMLHttpRequest object allows retrieving data from the web
server as a background activity

Slide:21 © 2009 Security-Assessment.com

Technologies - Ajax

 Ajax Components – Simple diagram

Slide:22 © 2009 Security-Assessment.com

Technologies - Ajax

 Traditional web model vs Ajax

Slide:23 © 2009 Security-Assessment.com

Technologies - JSON

 JSON (JavaScript Object Notation)

 Simple data transfer format that can be used to serialise
arbitrary data

 Data processed directly by JavaScript interpreters

 Commonly employed in Ajax applications – (alternative to XML)

 JSON Message Example - Message is treated as JavaScript array

 JavaScript constructs the array and then processes its contents

 JSON – Security implications

 Same Of Origin (SOP) applies for JavaScript code from different
domains but not for JavaScript data (JSON) from different
domains

[

[‘Jeff’, ‘1741024918’, ‘ginger@microsoft.com’],

[‘C Gillingham’, ‘3885193114’, ‘c2004@symantec.com’],

[‘Mike Kemp’, ‘8041148671’, ‘fkwitt@layerone.com’],

[‘Wade A’, ‘5078782513’, ‘kingofbeef@ngssoftware.com’]

]

Slide:24 © 2009 Security-Assessment.com

Practical tips to JavaScript Reversing

Slide:25 © 2009 Security-Assessment.com

Basics

 JavaScript Analysis/Debugging Tools

 WebDeveloper

 Firebug – Debugger, Console, Playing with DOM

 Venkman – Debugger

 Basic HTML/DOM/JavaScript analysis

 Looking at the source code

 Looking at the DOM

 Looking at the generated source code

 Understanding DOM, JavaScript functions and events

 Traversing DOM – Pay attention to:

 document.getElementById(―id‖)

 document.getElementsByTagName(―name‖)

Slide:26 © 2009 Security-Assessment.com

Reversing – Breakpoint with Firebug

Slide:27 © 2009 Security-Assessment.com

Reversing – Breakpoints and Stack

Slide:28 © 2009 Security-Assessment.com

DOM Analysis

Slide:29 © 2009 Security-Assessment.com

Venkman Debugger

Slide:30 © 2009 Security-Assessment.com

Finding XSS in DOM

 DOM XSS or Type 0 XSS

 Find injection point

 How do we know it’s a DOM XSS?

 DOM XSS does not appear in ―View Source‖ ;-)

 Look for the the following methods (from Attacking Rich Internet
Application – see references):

 document.URL

 document.URLUnencoded

 document.location (and many of its properties)

 document.referrer

 window.location (and many of its properties)

 Write raw HTML, e.g.:

 document.write(…)

 document.writeln(…)

 document.body.innerHtml=…

Slide:31 © 2009 Security-Assessment.com

Finding XSS in DOM

Slide:32 © 2009 Security-Assessment.com

Finding XSS in DOM

 Directly modifying the DOM (including DHTML events), e.g.:

 document.forms[0].action=…

 document.attachEvent(…)

 document.create…(…)

 document.execCommand(…)

 document.body. …

 window.attachEvent(…)

 Replacing the document URL, e.g.:

 document.location=…

 document.location.hostname=…

 document.location.replace(…)

 document.location.assign(…)

 document.URL=…

 window.navigate(…)

Slide:33 © 2009 Security-Assessment.com

Finding XSS in DOM

 Opening/modifying a window, e.g.:

 document.open(…)

 window.open(…)

 window.location.href=…

 Directly executing script, e.g.:

 eval(…)

 window.execScript(…)

 window.setInterval(…)

 window.setTimeout(…)

 DOM XSS should not always result in JavaScript execution

 New DOM XSS attacks might include:

 Modify/abuse sensitive objects

 Modify DOM/HTML Objects

 Leak and insert cookies (document.cookie)

 Perform directory traversal with XHR

Slide:34 © 2009 Security-Assessment.com

JavaScript and Ajax

 Reversing JavaScript – Ajax

 Intercept XHR (XMLHttpRequest) requests/responses with
Firebug (console and profiler)

 Pay attention to inline JavaScript events – they might trigger
XHR (Fire inline addon).

 Ajax is just a client-side technology – needs to be considered as
standard web application.

 Look for Ajax bridging – this is used to evade SOP between two
endpoints on different domains

 XML and XPath might be used in conjunction with Ajax

 Understand how Ajax engine constructs the request and
interfaces to XPath -> XML file.

 Ajax can also interface with a database (SQL).

 Understand how Ajax engine constructs the request and
interfaces with the database.

Slide:35 © 2009 Security-Assessment.com

JavaScript and Ajax

Slide:36 © 2009 Security-Assessment.com

JSON

 Reversing JavaScript – JSON

 Find the JSON service – check HTTP GET and POST requests

 Understand what type of JSON data is passed between client
and server side – are callback functions used? Like showc();
below:

 Injection in JSON can lead to JavaScript execution (as in eval())

 Check if the JSON comes as JSON label or not (note if brackets
are used to wrap JSON data like
({"errorsNum":2,"error":["Wrong email!","Wrong hobby!"]})

showC (

[

[‘test’, ‘1741024918’, ‘test@test.com’],

[‘test2’, ‘3885193114’, ‘test2@test.com’],

]);

Slide:37 © 2009 Security-Assessment.com

JSON

Slide:38 © 2009 Security-Assessment.com

JSON

 Attacking JSON – another way to do CSRF

 Use the same JavaScript JSON parser to handle the data from a
different domain

 Exploit CSRF of the victim application

 Before JavaScript 2.0, override of the Array function was used to
handle JSON data as in the following example:

 Setter needs to be used for objects or arrays to get JSON data
under control. JSON hijacking JavaScript code has to be
customised for each browser.

<script>

function array() {

var obj = this;

var ind = 0;

var getNext = function(x) {

obj[ind++] setter = getNext;

if (x) alert(‘Data stolen from array:’+x.toString());

}

this[ind++] setter = getNext;

}

<script src=‘http://jsonservice’></script>

Slide:39 © 2009 Security-Assessment.com

JSON

 Attacking JSON

 In case of callback function:

 Then, following code can be used in the malicious site to extract
data from the JSON service:

showC (

[

[‘test’, ‘1741024918’, ‘test@test.com’],

[‘test2’, ‘3885193114’, ‘test2@test.com’],

]);

<script>

function showC(a) {

alert(a);

}

</script>

<script

src=”URLwhichReturnstheJSONabove”></script>

Slide:40 © 2009 Security-Assessment.com

Unpacking/Deofuscating

 JavaScript deobfuscation/unpacking techniques

 Dean Edwards simple JavaScript packer

 Unpacking Dean Edwards with Malzilla (2 clicks)

 More complex case:

 Screen shots:

 1) Simple analysis of obfuscated JavaScript

 Deciphering shellcode

 Use of document.createelement

 2) Case of data to be deciphered that is not a part of the
script

 Use of arguments.calle.tostring

 Data attached to onload event

Slide:41 © 2009 Security-Assessment.com

Unpacking JavaScript

Slide:42 © 2009 Security-Assessment.com

Case I

Slide:43 © 2009 Security-Assessment.com

Case II

Slide:44 © 2009 Security-Assessment.com

Unpacking/Deofuscating

 Demo

 1) JavaScript de-obfuscation and shell code analysis

 2) LuckySploit

 New exploit kit - set of .HTML files

 Used for spreading the malware with the method of
Drive-by-Download

 Script using RSA algorithm

 Script only displayed once – if u browse back, the
script won’t appear again

Questions?

© 2007 Security-Assessment.com

http://www.security-assessment.com

Roberto.suggi@security-assessment.com

mailto:Roberto.suggi@security-assessment.com
mailto:Roberto.suggi@security-assessment.com
mailto:Roberto.suggi@security-assessment.com

Slide:46 © 2009 Security-Assessment.com

Resources

 DebugBar - http://www.my-debugbar.com/wiki/Doc/DebugbarInstall

 Firebug - http://getfirebug.com/docs.html

 WebDevHelper - http://projects.nikhilk.net/WebDevHelper/

 JavaScript Debugger - http://www.mozilla.org/projects/venkman/

 JavaScript Debugger Tutorial - http://devedge-
temp.mozilla.org/viewsource/2002/venkman/01/index_en.html

 JSON -
http://directwebremoting.org/blog/joe/2007/03/06/json_is_not_as_s
afe_as_people_think_it_is_part_2.html

 JSON/Twitter Example -
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-
friends-did-last-summer/

 Safety of JSON - http://ajaxian.com/archives/the-safety-of-json

 Forum Discussion – JSON -
http://sla.ckers.org/forum/read.php?2,25788

http://www.my-debugbar.com/wiki/Doc/DebugbarInstall
http://www.my-debugbar.com/wiki/Doc/DebugbarInstall
http://www.my-debugbar.com/wiki/Doc/DebugbarInstall
http://getfirebug.com/docs.html
http://projects.nikhilk.net/WebDevHelper/
http://www.mozilla.org/projects/venkman/
http://devedge-temp.mozilla.org/viewsource/2002/venkman/01/index_en.html
http://devedge-temp.mozilla.org/viewsource/2002/venkman/01/index_en.html
http://devedge-temp.mozilla.org/viewsource/2002/venkman/01/index_en.html
http://directwebremoting.org/blog/joe/2007/03/06/json_is_not_as_safe_as_people_think_it_is_part_2.html
http://directwebremoting.org/blog/joe/2007/03/06/json_is_not_as_safe_as_people_think_it_is_part_2.html
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://www.thespanner.co.uk/2009/01/07/i-know-what-your-friends-did-last-summer/
http://ajaxian.com/archives/the-safety-of-json
http://ajaxian.com/archives/the-safety-of-json
http://ajaxian.com/archives/the-safety-of-json
http://ajaxian.com/archives/the-safety-of-json
http://ajaxian.com/archives/the-safety-of-json
http://ajaxian.com/archives/the-safety-of-json
http://ajaxian.com/archives/the-safety-of-json
http://sla.ckers.org/forum/read.php?2,25788

Slide:47 © 2009 Security-Assessment.com

References

 LuckySploit - http://evilfingers.blogspot.com/2009/02/luckysploit-
right-hand-of-zeus.html

 AJAX Security - http://www.cgisecurity.com/ajax/

 Ajax Security Basics - http://www.securityfocus.com/infocus/1868/2

 JavaScript 2.0: The Complete Reference, Second Edition by Thomas
Powell and Fritz Schneider - ISBN:0072253576

 JavaScript: The Definitive Guide, 4th Edition By David Flanagan -
ISBN : 0-596-00048-0

 Pro JavaScript Techniques by John Resig ISBN: 1-59059-727-3

 Practical JavaScript™, DOM Scripting, and Ajax Projects by Frank W.
Zammett – ISBN: 1-59059-816-4

 JavaScript® Bible, Sixth Edition by Danny Goodman – ISBN: 978-0-
470-06916-5

http://evilfingers.blogspot.com/2009/02/luckysploit-right-hand-of-zeus.html
http://evilfingers.blogspot.com/2009/02/luckysploit-right-hand-of-zeus.html
http://evilfingers.blogspot.com/2009/02/luckysploit-right-hand-of-zeus.html
http://evilfingers.blogspot.com/2009/02/luckysploit-right-hand-of-zeus.html
http://evilfingers.blogspot.com/2009/02/luckysploit-right-hand-of-zeus.html
http://evilfingers.blogspot.com/2009/02/luckysploit-right-hand-of-zeus.html
http://evilfingers.blogspot.com/2009/02/luckysploit-right-hand-of-zeus.html
http://evilfingers.blogspot.com/2009/02/luckysploit-right-hand-of-zeus.html
http://evilfingers.blogspot.com/2009/02/luckysploit-right-hand-of-zeus.html
http://www.securityfocus.com/infocus/1868/2

Slide:48 © 2009 Security-Assessment.com

 Attacking Rich Internet Applications – Stefano Di Paola, Kuza55 -
http://www.ruxcon.org.au/files/2008/Attacking_Rich_Internet_Appli
cations.pdf

 LuckySploit - http://novirusthanks.org/blog/2009/03/luckysploit-
new-exploit-kit/

http://www.ruxcon.org.au/files/2008/Attacking_Rich_Internet_Applications.pdf
http://www.ruxcon.org.au/files/2008/Attacking_Rich_Internet_Applications.pdf
http://novirusthanks.org/blog/2009/03/luckysploit-new-exploit-kit/
http://novirusthanks.org/blog/2009/03/luckysploit-new-exploit-kit/
http://novirusthanks.org/blog/2009/03/luckysploit-new-exploit-kit/
http://novirusthanks.org/blog/2009/03/luckysploit-new-exploit-kit/
http://novirusthanks.org/blog/2009/03/luckysploit-new-exploit-kit/
http://novirusthanks.org/blog/2009/03/luckysploit-new-exploit-kit/
http://novirusthanks.org/blog/2009/03/luckysploit-new-exploit-kit/

